جسجتو در بین میلیونها کتاب

دانلود نامحدود

دانلود نامحدود

ساعات پشتیبانی تلفنی

پشتیبانی از ساعت 7 تا 23

ضمانت بازگشت وجه

ضمانت بازگشت وجه

دانلود کتاب Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering (Materials Horizons: From Nature to Nanomaterials)

فناوری‌های پیشرفته تولید میکرو و نانو: کاربردها در مهندسی بیوشیمی و بیوپزشکی (افق مواد: از طبیعت تا نانومواد)
عنوان فارسی

فناوری‌های پیشرفته تولید میکرو و نانو: کاربردها در مهندسی بیوشیمی و بیوپزشکی (افق مواد: از طبیعت تا نانومواد)

عنوان اصلیAdvanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering (Materials Horizons: From Nature to Nanomaterials)
ویرایش[1st ed. 2022]
ناشرSpringer
نویسندهShrikrishna Nandkishor Joshi (editor), Pranjal Chandra (editor)
ISBN 9811636443, 9789811636448
سال نشر2021
زبانEnglish
تعداد صفحات412 [404]
فرمت کتابpdf - قابل تبدیل به سایر فرمت ها
حجم فایل12 مگابایت

وضعیت : موجود

قیمت : 51,000 تومان

دانلود بلافاصله بعد از پرداخت امکان پذیر است

میانگین امتیاز:
از 1 رای

مشاهد کتاب در آمازون
توضیحات فهرست مطالب اطلاعات قبل از خربد

توضیحاتی در مورد کتاب

این جلد بر مبانی و پیشرفت‌ها در فناوری‌های تولید میکرو و نانو که در حوزه‌های بیوپزشکی و بیوشیمیایی اعمال می‌شود، تمرکز دارد. مطالب این جلد پوشش جامعی از اصول فیزیکی فناوری‌های ساخت پیشرفته و دانش کاربرد آن‌ها در ساخت دستگاه‌ها و سیستم‌های زیست‌پزشکی ارائه می‌کند. کتاب با مستندسازی سفر کوچک سازی و ساخت میکرو و نانو آغاز می شود. سپس به اصول فناوری‌های پیشرفته مختلف مانند قالب‌گیری میکرو سیم، چاپ سه‌بعدی، لیتوگرافی، چاپ، ماشین‌کاری مستقیم لیزری و ماشین‌کاری با کمک پلاسما با لیزر می‌پردازد. همچنین فناوری های مبتنی بر لیزر را پوشش می دهد که به دلیل انعطاف پذیری، سهولت در کنترل و کاربرد، دقت بالا و در دسترس بودن، گزینه امیدوارکننده ای هستند. این فناوری ها را می توان برای پردازش چندین ماده مانند شیشه، پلیمرها: پلی کربنات، پلی دی متیل سیلوکسان، پلی متیل متاکریلات و فلزاتی مانند فولاد ضد زنگ که معمولاً در ساخت دستگاه های زیست پزشکی مانند فناوری میکروسیال، سنسورهای نوری و فیبر نوری استفاده می شود، استفاده کرد. و حسگرهای زیستی الکتروشیمیایی. همچنین پیشرفت‌ها در فناوری‌های مختلف مبتنی بر MEMS/NEMS و کاربردهای آن‌ها در تبدیل انرژی و دستگاه‌های ذخیره‌سازی را مورد بحث قرار می‌دهد. این فصل ها توسط متخصصانی از حوزه های تولید میکرو و نانو، مهندسی مواد، نانو بیوتکنولوژی و کاربران نهایی مانند پزشکان، مهندسان، دانشگاهیان با سابقه بین رشته ای نوشته شده است. این کتاب راهنمای مفیدی برای دانشگاه و صنعت خواهد بود.

فهرست مطالب

Preface
Contents
About the Editors
1 Nanomaterials Based Biosensing: Methods and Principle of Detection
1 Introduction
2 What Makes a Sensor Good?
3 Methods for Biosensors Formulation
4 Working Principle
4.1 Nanoparticles (0D Materials)
4.2 Nanowire (1D Materials)
4.3 Nanosheet Based (2D)
4.4 3D Nanomaterials
4.5 Electrochemical Sensor
4.6 Electrochemical Glucose Biosensor: How Nanoscale Materials Appear to Play a Role?
5 Biological Recognition Element
6 Challenges
Questions and Answers to Check Your Reading
References
2 Pathways to Translate the Biomedical Prototypes
1 Introduction
2 Diagnostic Biosensors: An Overview
3 Planning for Device
4 Initial Implementation Stages
5 Design and Development
6 Information to Regulatory Body
7 Product Launch
8 Post Product Launch
9 Preparing for ICMR Inspections
10 Barriers for Commercialization
11 Summary
References
3 Accuracy of Biosensors as Rapid Diagnostic and Biochemical Monitoring Tools for Non-communicable Diseases Management
1 Introduction
1.1 Technology for Detection of Non-Communicable Diseases
2 Communication Technology for Biosensor
2.1 Architecture of Wireless Biosensor Networks
2.2 Communication Architecture
2.3 Communication Protocol Layer
2.4 Challenges in Designing WBNs
2.5 Issues of WBAN in Healthcare System
2.6 Interference in WBNs
2.7 Interference Mitigation
3 Conclusions and Future Directions
References
4 Rapid Manufacturing of Biomedical Devices: Process Alternatives, Selection and Planning
1 Introduction
2 Biomedical Devices
2.1 Classification of Biomedical Devices and Systems
2.2 Custom and Stock Device Design
3 Rapid Manufacturing
3.1 Classification of Rapid Manufacturing Processes
3.2 Allied Technologies
3.3 Implications of Rapid Manufacturing
4 Rapid Manufacturing of Biomedical Devices
4.1 Biomedical Fields of Rapid Manufacturing Application
4.2 Process Planning
4.3 Selection of an Appropriate AM Technology
4.4 Selection of Allied Processes
5 Challenges in Rapid Manufacturing of Biomedical Devices
5.1 Process Related Challenges
5.2 Management-Related Challenges
6 Conclusion
References
5 Advanced Finishing Processes for Biomedical Applications
1 Introduction
2 Applications and Advantages of Nanofinishing in the Biomedical Industry
3 Finishing Processes for Biomedical Implants
3.1 Abrasive Flow Finishing (AFF)
3.2 Abrasive Jet-Based Finishing
3.3 Magnetorheological Fluid-Based Finishing (MRFF)
3.4 Chemical Polishing (CP)
3.5 Electrolysis-Based Polishing (EBP)
3.6 Chemo-Mechanical Magnetorheological Finishing (CMMRF)
3.7 Magnetorheological Abrasive Flow Finishing (MRAFF)
3.8 Magnetorheological Jet Finishing (MRJF)
3.9 Ball End Magnetorheological Finishing (BEMRF)
3.10 Ultrasonic Polishing (UP)
3.11 Laser Polishing (LP)
4 Conclusions
References
6 Advanced Microchannel Fabrication Technologies for Biomedical Devices
1 Introduction
2 Overview of Various Microchannel Fabrication Technologies
3 Microwire Moulding
4 Lithography Technology
5 Embossing or Imprinting Technology
6 Laser Direct Machining
7 Laser-Induced Plasma-Assisted Ablation (LIPAA)
8 Summary
References
7 Droplet Microfluidics—A Tool for Biosensing and Bioengineering Applications
1 Introduction
2 Open Surface Droplet Microfluidics
2.1 Advantages of Open Surface Droplet Microfluidics
2.2 Fabrication Technology of Extreme Wetting Surfaces
2.3 Some Applications Based on Open Surface Droplet Microfluidics
3 In-channel Techniques
3.1 Reagent Encapsulation
3.2 Cell Manipulation
3.3 Drug Delivery
3.4 Droplet Screening
3.5 Artificial Cells
3.6 PCR
3.7 3D Cell Culture and Cell-Laden Hydrogel Droplets
4 Conclusion and Perspective
References
8 Advances in Microfluidic Techniques for Detection and Isolation of Circulating Tumor Cells
1 Introduction
2 Detection and Isolation of CTCs
2.1 Label-Free Techniques
2.2 Label-Based Techniques
2.3 Nucleic Acid-Based CTC Detection
3 Limitations in Microfluidic-Based CTCs Detection and Isolation
3.1 Lower Abundance of CTCs in Blood Cells
3.2 Non-specificity
3.3 Epithelial to Mesenchymal Transition (EMT)
3.4 Lack of Universal CTC Identification Technique
3.5 Post-processed Cell Viability
3.6 Low Throughput and Time-Consuming
4 Future Scope for Microfluidics-Based CTC Detection and Isolation
5 Conclusion
References
9 Localized Surface Plasmon Resonance Sensors for Biomarker Detection with On-Chip Microfluidic Devices in Point-of-Care Diagnostics
1 Introduction
2 Fundamental of LSPR
3 Theoretical Concept
3.1 Mie Theory
3.2 Refractive Index Sensitivity
3.3 LSPR Configurations
4 Characteristics of LSPR
4.1 Material Used
4.2 Nanoparticles Size and Shape
5 Fabrication Technique
5.1 PDMS-Based LSPR-Microfluidics Coupling
5.2 PMMA-Based LSPR-Microfluidics Coupling
6 Functionalization of LSPR Biosensor
7 Detection of Various Biomarkers Using LSPR-Based Microfluidic Devices
7.1 LSPR-Based PDMS Microchannel
7.2 Nanoparticles Geometry and Its Influence in Plasmonic Peak Shifts
7.3 LSPR in Multiplexing
8 Integrated LSPR Biosensors in POC Diagnostics Device: Challenges and Road Ahead
8.1 On-Chip Blood-Plasma Separation Microfluidics Platform
8.2 Acoustic-Driven Plasmofluidics
8.3 LSPR Integrated Photothermal Effect
8.4 Aptamer-Induced Sensitivity
9 Challenges and Road Ahead
10 Conclusion
References
10 Development of Piezoelectric Nanogenerator Based on Micro/Nanofabrication Techniques and Its Application on Medical Devices
1 Introduction
2 Working Principle of Piezoelectric Nanogenerator
3 Materials for Piezoelectric Nanogenerators
3.1 Lead-Based Materials
3.2 Lead-Free Materials
3.3 Polymeric Materials
3.4 Composite Materials
4 Medical Applications
4.1 Blood Pressure Sensor
4.2 Cardiac Sensor
4.3 Auditory Nerve Stimulation in the Cochlea
4.4 Deep Brain Stimulation
4.5 Other Applications
5 Challenges and Future Development
6 Conclusions
References
11 Optical Biosensors Towards Point of Care Testing of Various Biochemicals
1 Introduction
2 Overview of Optical Biosensors
2.1 Label-Based Fluorescence Optical Biosensors
2.2 Label-Free Evanescence-Based Optical Biosensors
3 Conclusion and Outlook
References
12 Blood Coagulation System and Carbon-Based Nanoengineering for Biomedical Application
1 Introduction
2 Overview of the Blood Coagulation System
2.1 Platelet
2.2 Plasma Proteins and Clotting Factors
2.3 Coagulation Cascade
3 Carbon-Based Nanomaterials
3.1 Carbon Nanotubes
3.2 Graphene
3.3 Nanodiamonds
3.4 Other Carbon-Based Nanomaterials
4 Interaction of Carbon-Based Nanomaterials and Blood Coagulation System
4.1 Effect of Carbon-Based Nanomaterials on Platelet Functions
4.2 Coagulation Proteins—Carbon-Based Nanomaterials Interaction
5 Sophisticated Techniques to Characterize Carbon-Based Nanomaterials—Blood Coagulation System Interaction
5.1 Flow Cytometry
5.2 Electron Microscopy
5.3 Platelet Aggregometry
6 Summary, Limitations, and Future Perspectives
References
13 Opportunities and Challenges in Medical Robotic Device Development
1 Introduction
2 Opportunities in Medical Device Development
2.1 Software-Driven Medical Devices
2.2 Surgical Robots and Minimally Invasive Surgery (MIS)
3 Major Challenges in Medical Device Development
3.1 Data Security and Product Safety
3.2 Process and Product Validation
4 Conclusion
References
14 Flexible Organic Field-Effect Transistors for Biomimetic Applications
1 Introduction
1.1 Historical Perspective
1.2 Flexible Electronics Advantages
1.3 Applications
2 Organic Field-Effect Transistors
2.1 Device Structure
2.2 Operation
2.3 Flexible OFETs
2.4 Operational Stability
2.5 Low Voltage Operation
3 OFETs for Smart Applications
3.1 OFETs as Sensors for Biomimetic Applications
3.2 OFETs Toward Green Electronics
4 Summary
References
15 Methods for Surface Superfinishing of Prosthesis
1 Introduction
2 Surface Superfinishing Operations for Prostheses
2.1 Magnetorheological Fluid Assisted Finishing Processes
2.2 Abrasive Flow Finishing
2.3 Large Area Electron Beam Irradiation
2.4 Electropolishing
2.5 Electrolytic In-Process Dressing (ELID) Grinding
2.6 Chemical Mechanical Polishing
3 Selection of a Suitable Surface Superfinishing Process
4 Conclusions
References
16 Principles of Advanced Manufacturing Technologies for Biomedical Devices
1 Introduction
2 Subtractive Manufacturing
2.1 Mechanical Machining
2.2 Photolithography
2.3 Replication Technologies
2.4 Other Important Fabrication Technologies
3 Biomedical Additive Manufacturing
3.1 Bio-Printing
3.2 Extrusion-Based Bioprinting
3.3 Inkjet Printing
3.4 Laser Bioprinting
3.5 Vat Photopolymerisation
3.6 Laser Micromachining
4 Characterization of Micro and Nano Biological Samples
5 Nanometrology
5.1 Bio Characterization
5.2 Confocal Microscopy
5.3 Atomic Force Microscopy (AFM)
5.4 Scanning Tunneling Microscopy (STM)
5.5 Scanning Near-Field Optical Microscopy (SNOM)
5.6 Scanning-Electron Microscopy (SEM)
5.7 Transmission Electron Microscopy
5.8 Auger Electron Microscopy
5.9 X-Ray Absorption Spectroscopy
5.10 Flow Cytometer
6 Conclusions
References

نحوه دریافت کتاب

این کتاب نسخه زبان اصلی است و ترجمه فارسی نیست.بعد از تکمیل فرایند خرید می توانید کتاب را دانلود نمایید. درصورت نیاز به تغییر فرمت کتاب به پشتیبان اطلاع دهید.

ورود به حساب کاربری

نام کاربری کلمه عبور

رمز عبور را فراموش کردی؟ کلیک کن

حساب کاربری نداری؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری آدرس ایمیل شماره موبایل کلمه عبور