جسجتو در بین میلیونها کتاب

دانلود نامحدود

دانلود نامحدود

ساعات پشتیبانی تلفنی

پشتیبانی از ساعت 7 تا 23

ضمانت بازگشت وجه

ضمانت بازگشت وجه

دانلود کتاب Fundamentals of Ground Improvement Engineering

مبانی مهندسی بهسازی زمین
عنوان فارسی

مبانی مهندسی بهسازی زمین

عنوان اصلیFundamentals of Ground Improvement Engineering
ویرایش1
ناشرCRC Press
نویسندهJeffrey Evans, Daniel Ruffing, David Elton
ISBN 0415695120, 9780415695121
سال نشر2023
زبانEnglish
تعداد صفحات431
فرمت کتابpdf - قابل تبدیل به سایر فرمت ها
حجم فایل297 مگابایت

وضعیت : موجود

قیمت : 39,000 تومان

میانگین امتیاز:
از 24 رای

مشاهد کتاب در آمازون
توضیحات فهرست مطالب اطلاعات قبل از خربد

توضیحاتی در مورد کتاب

بهسازی زمین یکی از پویاترین و سریعترین حوزه های مهندسی ژئوتکنیک و ساخت و ساز در 40 سال گذشته بوده است. نیاز به توسعه سایت‌هایی با خاک‌های حاشیه‌ای، بهسازی زمین را به یک جزء اصلی و مهم برنامه‌های درسی مهندسی ژئوتکنیک تبدیل کرده است. اصول مهندسی بهسازی زمین به موثرترین و جدیدترین تکنیک ها برای بهبود زمین می پردازد.



روش‌های کلیدی بهبود زمین معرفی شده‌اند که درک کاملی از تئوری، اصول طراحی و رویکردهای ساخت‌وساز که زیربنای هر روش هستند را در اختیار خوانندگان قرار می‌دهند. موضوعات اصلی تراکم، تزریق نفوذ، روش های ارتعاشی، اختلاط خاک، تثبیت و انجماد، دیوارهای برش، آبگیری، تحکیم، ژئوسنتتیک، تزریق جت، انجماد زمین، تزریق تراکم، و حفظ خاک است.



این کتاب برای دانشجویان مقطع کارشناسی و کارشناسی ارشد و همچنین افرادی که به دنبال پیشینه اساسی در این تکنیک ها هستند ایده آل است. مشکلات متعدد، با مثال های کار شده، عکس ها، شماتیک ها، نمودارها و نمودارها آن را به یک مرجع و ابزار آموزشی عالی تبدیل کرده است.

فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface and Acknowledgments: Fundamentals of Ground Improvement Engineering
Chapter 1 Introduction to ground improvement engineering
1.1 Introduction
1.2 Improvements in soil behavior
1.2.1 Shear strength
1.2.2 Compressibility
1.2.3 Hydraulic conductivity
1.2.4 Liquefaction potential
1.2.5 Shrink/swell behavior
1.2.6 Variability
1.3 Overview of ground improvement techniques
1.3.1 Compaction: shallow methods
1.3.2 Compaction: deep methods
1.3.3 Soil mixing and injection methods
1.3.4 Stabilization and solidification
1.3.5 Grouting
1.3.6 Dewatering
1.3.7 Consolidation
1.3.8 Mechanically stabilized earth
1.3.9 In situ barriers
1.3.10 Future developments in ground improvement
1.4 Importance of construction
1.5 Problems
References
Chapter 2 Geotechnical fundamentals
2.1 Definitions
2.1.1 Water content
2.1.2 Density, unit weight, density of solids, and specific gravity
2.2 Water flow in soil
2.2.1 Darcy’s law and one-dimensional flow
2.2.2 Flownets and two-dimensional flow
2.2.3 Quantity of water flowing through soil
2.2.4 Porewater pressure with water flowing through soil
2.2.5 Uplift pressures
2.2.6 Seepage force
2.2.7 Capillary rise of groundwater
2.3 Effective stress
2.3.1 Effective stress equation
2.3.2 Importance of effective stress
2.4 Shear strength
2.4.1 The concept of soil strength
2.4.2 Laboratory evaluation of shear strength
2.4.2.1 Direct shear testing
2.4.2.2 Triaxial testing
2.4.3 Shear strength summary
2.5 Lateral earth pressures
2.5.1 Active earth pressure
2.5.2 Passive earth pressure
2.5.3 At-rest (K0) earth pressure
2.5.4 Amount of movement to develop active, passive, and at-rest earth pressures
2.6 Field investigations
2.6.1 Drilling methods
2.6.2 Sampling methods
2.6.3 In situ test methods
2.6.3.1 SPT
2.6.3.2 CPT
2.7 Problems
References
Chapter 3 Fundamentals of geosynthetics in ground improvement
3.1 Introduction
3.1.1 Geotextiles
3.1.2 Geogrids
3.1.3 Geocells
3.1.4 Geofibers
3.1.5 Historical notes
3.2 Properties of geosynthetics
3.2.1 Tensile strengths
3.2.2 Permittivity (used in drainage)
3.2.3 Transmissivity (used in drainage)
3.2.4 Pore size determination (used in filtration)
3.2.5 Interface friction (used in mechanically stabilized earth and steepened slope design)
3.2.6 Survivability and durability
3.3 Geotextile filter design
3.3.1 Introduction
3.3.2 Design procedure
3.4 Summary
3.5 Problems
References
Chapter 4 Compaction
4.1 Introduction
4.2 Theoretical underpinnings of compaction
4.3 Property improvements resulting from compaction
4.3.1 Strength
4.3.2 Compressibility
4.3.3 Hydraulic conductivity (permeability)
4.3.4 Optimizing compacted soil properties
4.4 Shallow compaction
4.4.1 Field compaction equipment
4.4.2 Construction aspects of shallow compaction
4.5 Rapid impact compaction
4.5.1 Introduction
4.5.2 Applications
4.5.3 Construction vibrations
4.6 Deep dynamic compaction
4.6.1 Introduction
4.6.2 Design considerations for dynamic compaction
4.6.3 Verification of compaction effectiveness
4.6.4 Applications of deep dynamic compaction
4.6.5 Construction vibrations
4.7 Deep vibratory methods
4.7.1 Introduction to deep vibratory methods
4.7.2 Vibrocompaction
4.7.3 Vibroreplacement
4.8 Aggregate piers
4.9 Problems
References
Chapter 5 Consolidation
5.1 Introduction
5.2 Consolidation fundamentals
5.3 Stress distribution
5.4 Design approach
5.4.1 Time rate of consolidation
5.4.2 Preloading
5.5 Speeding consolidation with vertical drains
5.5.1 Introduction
5.5.2 Consolidation with vertical drains
5.6 Additional vertical drain considerations
5.6.1 Vertical drain types
5.6.2 Effect of PVD installation patterns
5.6.3 Effect of soil disturbance (smear)
5.7 Vacuum consolidation
5.8 Combined vacuum consolidation and preloading with vertical drains
5.9 Nature’s consolidation preloading
5.10 Summary
5.11 Problems
References
Chapter 6 Soil mixing
6.1 Introduction
6.2 History of soil mixing
6.3 Definitions, types, and classifications
6.3.1 Depth of soil mixing
6.3.2 Methods of mixing reagents
6.3.3 Equipment used for soil mixing
6.3.4 Treatment patterns
6.4 Applications
6.4.1 Shear walls
6.4.2 Aerial bearing capacity improvement
6.4.3 Hydraulic cutoff walls
6.4.4 Excavation support walls
6.4.5 Environmental soil mixing
6.4.6 Geoenvironmental soil mixing
6.5 Design considerations
6.5.1 Determine project needs
6.5.2 Select target design parameters
6.5.2.1 Strength
6.5.2.2 Hydraulic conductivity
6.5.2.3 Leachability
6.5.3 Reagent addition rates
6.5.4 Reagent (binder) types and selection
6.5.5 Develop and evaluate construction objectives
6.5.6 Construction
6.5.7 Sampling
6.5.8 In situ testing
6.6 Problems
References
Chapter 7 Grouting
7.1 Introduction
7.2 History of grouting
7.2.1 History of suspension grouting
7.2.2 History of solution grouting
7.3 Grouting types and classifications
7.3.1 Suspension grouts
7.3.2 Common grout mixtures for suspension grouting
7.3.3 Neat cement grout
7.3.4 Balanced stable grout
7.3.5 Microfine or ultrafine cement grouting
7.4 Solution grouts
7.4.1 Types of solution grouts
7.5 Permeation (penetration) grouting
7.6 Fracture grouting
7.7 Compensation grouting
7.8 Void grouting
7.9 Grout properties
7.9.1 Set (gel) time
7.9.2 Stability
7.9.3 Viscosity
7.9.4 Permanence
7.9.5 Toxicity
7.10 Applications
7.11 Design considerations
7.11.1 Understanding grout physics and preliminary planning
7.11.2 Geological conditions and site investigations
7.11.3 Interaction between grout and soil/rock
7.11.4 Grout mix design
7.12 Construction
7.12.1 Pre-grouting
7.12.2 Suspension and solution grouting
7.12.3 Drill rigs
7.12.4 Mixing (batch) plants
7.12.5 Pumping systems
7.12.6 Packers
7.13 Quality control
7.13.1 Flow measurements
7.13.2 Monitoring
7.13.3 Automated Monitoring Equipment
7.14 Void grouting, a special application
7.15 Problems
References
Chapter 8 Slurry trench cutoff walls
8.1 Introduction and overview
8.1.1 Functions of slurry trench cutoff walls
8.1.2 History of slurry trench cutoff walls
8.1.3 Slurry trench cutoff walls as a ground improvement technique
8.2 SB slurry trench Cutoff Walls
8.2.1 Excavation stability
8.2.2 Slurry property measurement
8.2.3 SB backfill design
8.2.4 Excavation techniques
8.3 CB slurry trench cutoff walls
8.3.1 CB mixtures and properties
8.3.2 Role of the bentonite in CB mixtures
8.3.3 Volume change behavior
8.4 Structural slurry walls (diaphragm walls)
8.5 Problems
References
Chapter 9 Ground improvement using geosynthetics
9.1 Introduction
9.2 Geosynthetic ground improvement
9.2.1 Introduction
9.2.2 Geosynthetic types used in ground improvement
9.2.3 Geosynthetic applications in ground improvement
9.3 Properties of geosynthetics
9.3.1 Introduction
9.3.2 Tensile strength
9.3.3 Interface friction
9.3.4 Durability
9.3.5 Geotextile survivability
9.4 Road base stabilization (Corps of Engineers methods)
9.4.1 Introduction
9.4.2 Unpaved road improvement using geosynthetics
9.4.3 Paved road improvement using geosynthetics
9.4.4 Geofibers in roads
9.5 Embankments over soft ground
9.5.1 Introduction
9.5.2 Conventional construction of embankments
9.5.3 Geosynthetic usage in embankment construction
9.5.4 Design procedure
9.5.4.1 Slope stability
9.5.4.2 Sliding of soil on top of geosynthetic
9.5.4.3 Geosynthetic rupture due to sliding
9.5.4.4 Pullout of the geosynthetic
9.5.4.5 Bearing capacity
9.5.4.6 Settlement
9.5.4.7 Additional checks
9.5.5 Instrumentation
9.5.6 Construction guidance
9.5.7 Alternative procedures
9.6 Underfooting reinforcement with rolled geosynthetics
9.6.1 Introduction
9.6.2 Design procedure
9.6.3 Construction
9.7 Underfooting reinforcement with geocells
9.7.1 Introduction
9.7.2 Ultimate load calculation
9.7.3 State of practice
9.7.4 Construction advice
9.8 Underfooting reinforcement with geofibers
9.8.1 Introduction
9.8.2 Design procedure for strength increase
9.8.3 Construction advice
9.9 Soil separation
9.9.1 Introduction
9.9.2 Design procedures
9.9.3 Construction advice
9.10 Problems
References
Chapter 10 Reinforcement in walls, embankments on stiff ground, and soil nailing
10.1 Introduction
10.2 Mechanically stabilized earth walls
10.2.1 Introduction
10.2.2 Design philosophy
10.2.3 Advantages and disadvantages of MSE walls
10.2.4 Design using geosynthetics
10.2.4.1 Sliding of the reinforced mass
10.2.4.2 Reinforcement breakage
10.2.4.3 Reinforcement pullout
10.2.4.4 Other failure modes
10.2.5 Design of internal components
10.2.6 External stability
10.2.7 Typical factors of safety
10.2.8 Inclusions in the backfill
10.2.9 Drainage
10.2.10 Other considerations
10.2.11 Construction guidelines
10.3 Mechanically stabilized earth walls using metal reinforcement
10.3.1 Introduction
10.3.2 Differences between metal and geosynthetic reinforcement
10.3.3 Failure modes and typical factors of safety
10.3.4 Inclusions in the backfill
10.3.5 Construction guidelines
10.4 Reinforced soil embankments on firm foundations using geosynthetic and metal reinforcement
10.4.1 Introduction
10.4.2 Philosophy of how reinforcement for steepened slopes works
10.4.3 Engineering properties needed
10.4.4 Design notes
10.4.5 Construction procedure
10.4.6 Inclusions in the backfill
10.4.7 Internal stability: pullout and breakage, internal slope stability
10.4.8 External stability: bearing capacity, sliding, and settlement
10.4.9 Slope face stability: veneer instability, erosion control, and wrapped faces
10.4.10 Drainage
10.5 Soil nailing
10.5.1 Introduction
10.5.2 Applications
10.5.3 Applicable sites
10.5.4 Components of a soil nail system
10.5.5 Methods of installing soil nails
10.5.6 Design of soil nailed walls
10.5.6.1 Failure modes
10.5.6.2 Design calculations
10.5.7 Construction of soil nailed walls
10.5.8 Nail testing
10.5.9 Corrosion protection
10.5.10 Instrumentation
10.5.11 Launched soil nails
10.6 Problems
References
Chapter 11 Additional techniques in ground improvement
11.1 Jet grouting
11.1.1 Introduction to jet grouting
11.1.2 Environmental considerations
11.1.3 Design considerations in jet grouting
11.2 Ground freezing
11.2.1 Introduction to ground freezing
11.2.2 Fundamentals of ground freezing
11.2.3 Properties of frozen ground
11.2.4 Containment of contaminated soils
11.2.5 Limitations of ground freezing
11.2.6 Conclusions regarding ground freezing
11.3 Secant pile walls
11.4 Compaction grouting
11.4.1 Introduction and history
11.4.2 Uses
11.4.3 Design
11.4.4 Construction
11.5 Explosives in ground improvement
11.5.1 Introduction
11.5.2 Applications of explosives
11.5.3 Ground conditions favorable to explosives for compaction
11.5.4 Construction practice for compaction by explosives
11.5.5 Post explosion evaluations
11.5.6 Collateral concerns with the use of explosives
11.5.7 Case studies
11.6 Problems
References
Chapter 12 The future of ground improvement engineering
12.1 Introduction
12.2 Biogeotechnical methods for Ground improvement
12.2.1 Biocementation
12.2.2 Bioclogging to reduce hydraulic conductivity
12.2.3 Bio-methods for liquefaction mitigation
12.3 New materials for ground improvement
12.3.1 MgO cement
12.3.2 Polymers
12.3.3 Smart and self-healing materials
12.4 Technology developments in ground improvement: drones, sensors, and artificial intelligence
12.5 Equipment developments
12.6 Sustainability in ground improvement
12.6.1 Introduction to sustainable ground improvement
12.6.2 Sustainable materials
12.7 Crossover information in ground improvement
12.8 Summary of future developments in ground improvement
12.9 Problems
References
Index

نحوه دریافت کتاب

این کتاب نسخه زبان اصلی است و ترجمه فارسی نیست.بعد از تکمیل فرایند خرید می توانید کتاب را دانلود نمایید. درصورت نیاز به تغییر فرمت کتاب به پشتیبان اطلاع دهید.

ورود به حساب کاربری

نام کاربری کلمه عبور

رمز عبور را فراموش کردی؟ کلیک کن

حساب کاربری نداری؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری آدرس ایمیل شماره موبایل کلمه عبور